mean of the sample 8,3,7,3,4 is given by: [tex] \mu=\frac{ \Sigma x_i}{n} [/tex] summation of x is: [tex] \Sigma x_i=8+3+7+3+4=25
n=5
[/tex] hence [tex] \mu= \frac{25}{5}=5[/tex]
The variance will be [tex] \sigma^2= \frac{\Sigma(x- \mu)^2}{n}
[/tex] [tex]\Sigma(x_i- \mu)^2= 22[/tex] [tex] \sigma^2= \frac{22}{5}=4.4
[/tex]